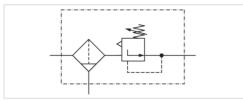
Page 1 | AVENTICS

5 Caulside Drive Antrim BT41 2DU United Kingdom +44 (0) 28 9448 1808 European Office Unit 6, Saint Anthony's Business Park Dublin D22 VW95 +353 (0) 1 4373653



Filter pressure regulator, Series NL6-FRF

- G 1
- filter porosity 8 µm
- with window
- suitable for ATEX

Version 1-in-1, Can be assembled into blocks

Parts Filter pressure regulator

Mounting orientation vertical

Certificates suitable for ATEX

Working pressure min./max. 1,5 ... 16 bar -10 ... 60 °C Ambient temperature min./max. -10 ... 60 °C Medium temperature min./max.

Medium Compressed air Neutral gases

Nominal flow Qn 15000 l/min

Regulator type Diaphragm-type pressure regulator

with relieving air exhaust Regulator function

Adjustment range min./max. 0,5 ... 10 bar Pressure supply single

125 cm³ Filter reservoir volume

Filter element exchangeable

Condensate drain fully automatic, open without pressure

Max. Internal air consumption 0.5 l/min See table Weight

Technical data

Part No.	Port	Flow Qn	Condensate drain	Reservoir	Weight
0821300885	G 1	15000 l/min	fully automatic, open without pressure	Polycarbonate	2,18 kg
0821300865	G 1	15000 l/min	fully automatic, open without pressure	Die cast zinc	2,48 kg

Technical information

polycarbonate reservoirs

The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C .

Mounting: mounting bracket 1821336017 / block assembly kit 1827009593

The rear pressure gauge connection on the pressure regulator is closed with a blanking plug, the front connection is open. Depending on the customer application, a second blanking plug may be necessary. Please order separately (see accessories).

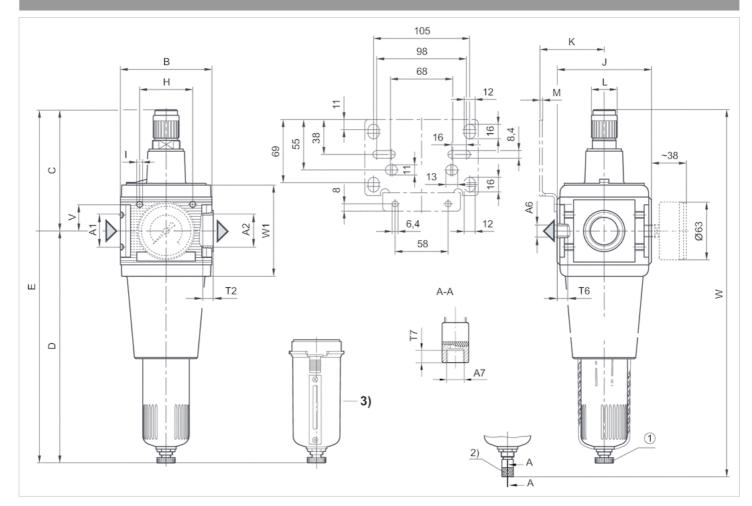
Suitable for use in Ex zones 1, 2, 21, 22

Note: Polycarbonate reservoirs are susceptible to solvents, supplementary information can be found at "Customer information". A change in the flow direction (from air supply on the left to air supply on the right) occurs by rotating installation by 180° about the vertical axis. Please see the operating instructions for further details.

Also suitable for separation of fluid oil or water due to the design.

Page 2 | AVENTICS

UK Office 5 Caulside Drive Antrim BT41 2DU United Kingdom +44 (0) 28 9448 1808 European Office Unit 6, Saint Anthony's Business Park Dublin D22 VW95 Ireland +353 (0) 1 4373653



Technical information

Material	
Housing	Die-cast aluminum
Front plate	Acrylonitrile butadiene styrene
Seals	Acrylonitrile butadiene rubber
Reservoir	Polycarbonate Die cast zinc
Filter insert	Polyethylene

Dimensions

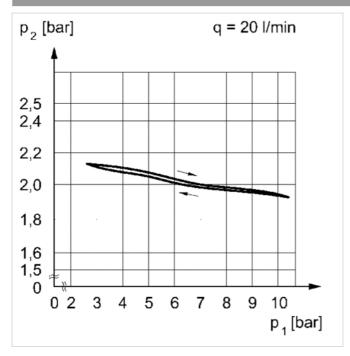
Dimensions

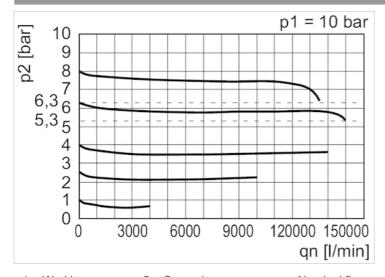
- A1 = inputA2 = outputA6 = output
- A7 = condensate drain
- 1) Semi-automatic condensate drain2) fully automatic condensate drain
- 3) Metal reservoir with level indicator

Dimensions in mm

A1	A2	A6	A7	В	С	D	E	Н		J	K	L	М	T2	T6	T7	V	W	W1
G 1	G 1	G 1/4	G 1/8	100	132	253	385	58	M6	103	70.5	28	3	18	7	8.5	29	397	101.5
G 1	G 1	G 1/4	G 1/8	100	132	253	385	58	M6	103	70.5	28	3	18	7	8.5	29	397	101.5

Page 3 | AVENTICS


UK Office 5 Caulside Drive Antrim BT41 2DU United Kingdom +44 (0) 28 9448 1808 European Office Unit 6, Saint Anthony's Business Park Dublin D22 VW95 Ireland +353 (0) 1 4373653


Diagrams

Pressure characteristics curve

p1 = working pressurep2 = secondary pressureqn = nominal flowq = flow rate

Flow rate characteristic

p1 = Working pressurep2 = Secondary pressureqn = Nominal flow