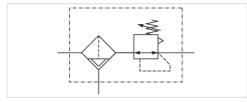
Page 1 | AVENTICS

5 Caulside Drive Antrim BT41 2DU United Kingdom +44 (0) 28 9448 1808 European Office Unit 6, Saint Anthony's Business Park Dublin D22 VW95 +353 (0) 1 4373653



Filter pressure regulator, Series AS5-**FRF**

- G 3/4
- filter porosity 25 µm
- lockable
- for padlocks
- suitable for ATEX

Version Parts

Mounting orientation

Certificates

Working pressure min./max. Ambient temperature min./max. Medium temperature min./max.

Medium

Nominal flow Qn Regulator type Regulator function

Adjustment range min./max.

Pressure supply Filter reservoir volume

Filter element Condensate drain

Max. Internal air consumption

Weight

1-in-1, Can be assembled into blocks

Filter pressure regulator

vertical

suitable for ATEX

1.5 ... 16 bar -10 ... 50 °C -10 ... 50 °C

Compressed air Neutral gases

13000 l/min

Diaphragm-type pressure regulator

with relieving air exhaust

0,5 ... 8 bar sinale 87 cm³

exchangeable

semi-automatic, open without pressure

1,5 l/min 1,57 kg

Technical data

Part No.	Port	Flow Qn	Condensate drain				
R412009188	G 3/4	13000 l/min	semi-automatic, open without pressure				
R412009189	G 1	13000 l/min	semi-automatic, open without pressure				

Technical information

The pressure dew point must be at least 15 °C under ambient and medium temperature and may not exceed 3 °C .

Note: Polycarbonate reservoirs are susceptible to solvents, supplementary information can be found at "Customer information". Suitable for use in Ex zones 1, 2, 21, 22

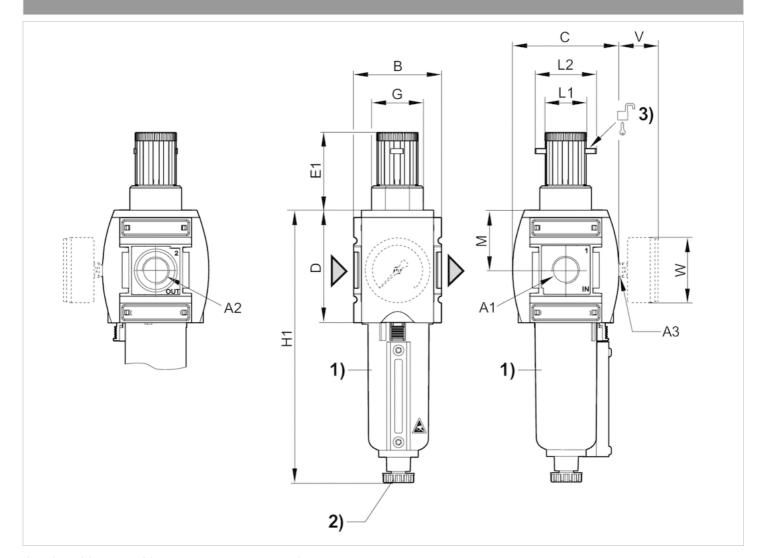
A change in the flow direction (from air supply on the left to air supply on the right) occurs by rotating installation by 180° about the vertical axis. Please see the operating instructions for further details.

Also suitable for separation of fluid oil or water due to the design.

solid impurities in the compressed air at the outlet as per ISO 8573-1 class 7

Page 2 | AVENTICS

UK Office 5 Caulside Drive Antrim BT41 2DU United Kingdom +44 (0) 28 9448 1808 European Office Unit 6, Saint Anthony's Business Park Dublin D22 VW95 Ireland +353 (0) 1 4373653



Technical information

Material							
Housing	Polyamide						
Front plate	Acrylonitrile butadiene styrene						
Seals	Acrylonitrile butadiene rubber						
Threaded bushing	Die cast zinc						
Reservoir	Die cast zinc						
Protective guard	Polyamide						
Filter insert	Polyethylene						

Dimensions

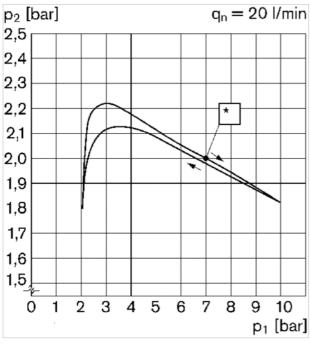
Dimensions

A1 = inputA2 = outputA3 = pressure gauge connection

- 1) Metal reservoir with level indicator
- 2) Semi-automatic condensate drain
- 3) Mounting option for padlocks; max. shackle Ø 8

Page 3 | AVENTICS

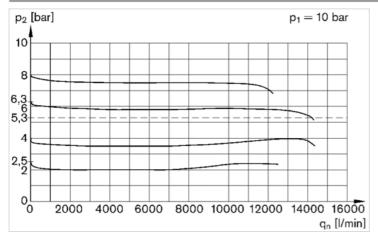
UK Office 5 Caulside Drive Antrim BT41 2DU United Kingdom +44 (0) 28 9448 1808 European Office Unit 6, Saint Anthony's Business Park Dublin D22 VW95 Ireland +353 (0) 1 4373653



A1	A2	A3	В	С	D	E1	G	H1	L1	L2	М	V	W
G 3/4	G 3/4	G 1/4	85	103	109	75	M50x1,5	250	41	60	58	38	63
G 1	G 1	G 1/4	85	103	109	75	M50x1,5	250	41	60	58	38	63

Diagrams

Pressure characteristics curve


p1 = working pressure

p2 = secondary pressure

qn = nominal flow

* starting point

Flow rate characteristic (setting range p2: 0.5 - 8 bar)

p1 = working pressure

p2 = secondary pressure

qn = nominal flow